By Topic

Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal particles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matsumoto, Morihiko ; NTT Tech. Assistance & Support Center, Musashino, Japan ; Miyata, Yoshimori

Soft magnetic material has been produced in which flaky thin amorphous metal particles, about 2 μm thick, are aligned in polymer in the direction perpendicular to electromagnetic wave propagation. This material yields a permeability two to three times higher than the spinel-type ferrite system in the quasi-microwave band. We have designed a thin wave absorber composed of the present material by introducing a low-permittivity area such as a free space into the present metal-containing material. This decreases the average permittivity, striking a balance between complex permeability and permittivity values, and thus reducing the reflection coefficient of the absorber. A thin (about 3-mm thick) wave absorber with a reflection loss of over 30 dB in the quasi-microwave band was successfully obtained when the free space region was 5% of the total volume

Published in:

Magnetics, IEEE Transactions on  (Volume:33 ,  Issue: 6 )