By Topic

Estimation of global leaf area index and absorbed par using radiative transfer models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. B. Myneni ; Dept. of Geogr., Boston Univ., MA ; R. Ramakrishna ; R. Nemani ; S. W. Running

A simple method for the estimation of global leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by the vegetation (FAPAR) from atmospherically corrected Normalized Difference Vegetation Index (NDVI) observations is described. Recent improvements to the authors' three dimensional radiative transfer model of a vegetated surface are described. Example simulation results and a validation exercise are discussed. The model was utilized to derive land cover specific NDVI-LAI and NDVI-FAPAR relations. The method therefore requires stratification of global vegetation into cover types that are compatible with the radiative transfer model. Such a classification based on vegetation structure is proposed and a simple method for its derivation is presented. Proof-of-concept results are given to illustrate the feasibility of the proposed method

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:35 ,  Issue: 6 )