By Topic

Asymmetric Correlation: A Noise Robust Similarity Measure for Template Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Elboher, E. ; Sch. of Comput. Sci., Hebrew Univ. of Jerusalem, Jerusalem, Israel ; Werman, M.

We present an efficient and noise robust template matching method based on asymmetric correlation (ASC). The ASC similarity function is invariant to affine illumination changes and robust to extreme noise. It correlates the given non-normalized template with a normalized version of each image window in the frequency domain. We show that this asymmetric normalization is more robust to noise than other cross correlation variants, such as the correlation coefficient. Direct computation of ASC is very slow, as a DFT needs to be calculated for each image window independently. To make the template matching efficient, we develop a much faster algorithm, which carries out a prediction step in linear time and then computes DFTs for only a few promising candidate windows. We extend the proposed template matching scheme to deal with partial occlusion and spatially varying light change. Experimental results demonstrate the robustness of the proposed ASC similarity measure compared to state-of-the-art template matching methods.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 8 )