Cart (Loading....) | Create Account
Close category search window
 

Dictionary Learning-Based Subspace Structure Identification in Spectral Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liping Jing ; Comput. & Inf. Technol., Beijing Jiaotong Univ., Beijing, China ; Ng, M.K. ; Tieyong Zeng

In this paper, we study dictionary learning (DL) approach to identify the representation of low-dimensional subspaces from high-dimensional and nonnegative data. Such representation can be used to provide an affinity matrix among different subspaces for data clustering. The main contribution of this paper is to consider both nonnegativity and sparsity constraints together in DL such that data can be represented effectively by nonnegative and sparse coding coefficients and nonnegative dictionary bases. In the algorithm, we employ the proximal point technique for the resulting DL and sparsity optimization problem. We make use of coding coefficients to perform spectral clustering (SC) for data partitioning. Extensive experiments on real-world high-dimensional and nonnegative data sets, including text, microarray, and image data demonstrate that the proposed method can discover their subspace structures. Experimental results also show that our algorithm is computationally efficient and effective for obtaining high SC performance and interpreting the clustering results compared with the other testing methods.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 8 )

Date of Publication:

Aug. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.