By Topic

Degree Fluctuations and the Convergence Time of Consensus Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Olshevsky, A. ; Dept. of Ind. & Enterprise Syst. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Tsitsiklis, J.N.

We consider a consensus algorithm in which every node in a sequence of undirected, B-connected graphs assigns equal weight to each of its neighbors. Under the assumption that the degree of each node is fixed (except for times when the node has no connections to other nodes), we show that consensus is achieved within a given accuracy ε on n nodes in time B+4n3 Bln(2n/ε). Because there is a direct relation between consensus algorithms in time-varying environments and in homogeneous random walks, our result also translates into a general statement on such random walks. Moreover, we give a simple proof of a result of Cao, Spielman, and Morse that the worst case convergence time becomes exponentially large in the number of nodes n under slight relaxation of the degree constancy assumption.

Published in:

Automatic Control, IEEE Transactions on  (Volume:58 ,  Issue: 10 )