Cart (Loading....) | Create Account
Close category search window
 

A Bag-of-Features Framework to Classify Time Series

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Baydogan, M.G. ; Security & Defense Syst. Initiative, Tempe, AZ, USA ; Runger, G. ; Tuv, E.

Time series classification is an important task with many challenging applications. A nearest neighbor (NN) classifier with dynamic time warping (DTW) distance is a strong solution in this context. On the other hand, feature-based approaches have been proposed as both classifiers and to provide insight into the series, but these approaches have problems handling translations and dilations in local patterns. Considering these shortcomings, we present a framework to classify time series based on a bag-of-features representation (TSBF). Multiple subsequences selected from random locations and of random lengths are partitioned into shorter intervals to capture the local information. Consequently, features computed from these subsequences measure properties at different locations and dilations when viewed from the original series. This provides a feature-based approach that can handle warping (although differently from DTW). Moreover, a supervised learner (that handles mixed data types, different units, etc.) integrates location information into a compact codebook through class probability estimates. Additionally, relevant global features can easily supplement the codebook. TSBF is compared to NN classifiers and other alternatives (bag-of-words strategies, sparse spatial sample kernels, shapelets). Our experimental results show that TSBF provides better results than competitive methods on benchmark datasets from the UCR time series database.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 11 )

Date of Publication:

Nov. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.