By Topic

Novel Robust Normality Measure for Sparse Data and its Application for Weak Signal Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lu, Lu ; LSI Corporation, Milpitas, CA 95131, USA ; Yan, Kun ; Wu, Hsiao-Chun ; Chang, Shih Yu

In this paper, an important statistical signal processing characteristic, namely Gaussianity or normality, is studied. In contrast to the existing Gaussianity measures, we propose a novel measure, which is based on Kullback-Leibler divergence (KLD) between the Gaussian probability density function (PDF) and the generalized Gaussian PDF incorporated with the skewness for the normality test. In our studies, conventional normality tests may often not be robust when they are employed for the non-Gaussian processes with symmetric PDFs. We call this new test as the KGGS test. Our proposed KGGS test is heuristically justified to be more robust than conventional tests for different PDFs, especially symmetric PDFs. A popular application of the normality test for QPSK signal detections is also presented to verify the effectiveness of our proposed technique and the simulation results demonstrate that our new KGGS test would outperform all others even for sparse data samples.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:12 ,  Issue: 5 )