By Topic

Asymptotic theory of boundary layers of weakly ionized thermal plasmas on emitting electrodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. S. Benilov ; Dept. of Fisica, Univ. da Madeira, Funchal, Portugal

The paper deals with collision-dominated boundary layers of weakly ionized thermal plasmas on emitting electrodes. The case considered is when the dominating ionization mechanism in the plasma is ionization by electron impact, and the dominating recombination mechanism is recombination with an electron as a third body. The ratio of the Debye length to the recombination length is treated as a small parameter, and the method of matched asymptotic expansions is employed. Analytical formulas have been obtained for the distributions of the number densities of ions and electrons and of the electrostatic potential in each asymptotic zone. Formulas have been obtained describing the voltage drop in the boundary layer as a function of the density of the electric current coming from the plasma to the electrode

Published in:

IEEE Transactions on Plasma Science  (Volume:25 ,  Issue: 5 )