By Topic

Combined Nonparametric Prediction Intervals for Wind Power Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abbas Khosravi ; Centre for Intelligent Systems Research (CISR), Deakin University, Waurn Ponds Campus, Geelong, Australia ; Saeid Nahavandi

Prediction intervals (PIs) are a promising tool for quantification of uncertainties associated with point forecasts of wind power. However, construction of PIs using parametric methods is questionable, as forecast errors do not follow a standard distribution. This paper proposes a nonparametric method for construction of reliable PIs for neural network (NN) forecasts. A lower upper bound estimation (LUBE) method is adapted for construction of PIs for wind power generation. A new framework is proposed for synthesizing PIs generated using an ensemble of NN models in the LUBE method. This is done to guard against NN performance instability in generating reliable and informative PIs. A validation set is applied for short listing NNs based on the quality of PIs. Then, PIs constructed using filtered NNs are aggregated to obtain combined PIs. Performance of the proposed method is examined using data sets taken from two wind farms in Australia. Simulation results indicate that the quality of combined PIs is significantly superior to the quality of PIs constructed using NN models ranked and filtered by the validation set.

Published in:

IEEE Transactions on Sustainable Energy  (Volume:4 ,  Issue: 4 )