By Topic

Channel sharing in multi-hop WDM lightwave networks: do we need more channels?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tridandapani, S.B. ; Dept. of Electr. Eng. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; Mukherjee, B. ; Hallingstad, G.

A local lightwave network can be constructed by employing two-way fibers to connect nodes in a passive-star physical topology, and the available optical bandwidth may be accessed by the nodal transmitters and receivers at electronic rates using wavelength-division multiplexing (WDM). The number of WDM channels, w, in such a network is technology-limited and is less than the number of network nodes, N, especially if the network should support a scalable number of nodes. We describe a general and practical channel sharing method, which requires each node to be equipped with only one transmitter-receiver pair, and in which each WDM channel is shared in a time-division multiplexed fashion; optical fiber LANs are discussed in particular. We also develop a general model for analyzing such a shared-channel, multi-hop, WDM network. Our analysis yields a counterintuitive result: it is sometimes better to employ fewer channels than a larger number of channels. We explore bounds on the ranges of w which admit queueing stability-using too few or too many channels can lead to instability. We also obtain an estimate for the optimal number of channels that minimizes network-wide queueing delay

Published in:

Networking, IEEE/ACM Transactions on  (Volume:5 ,  Issue: 5 )