By Topic

Ball bearing damage detection using traditional signal processing algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Fault detection and diagnosis of ball bearings has always been a challenge when monitoring rotating machinery. Specifically, bearing diagnostics have seen extensive research in the field of fault detection and diagnosis. This article reviews traditional algorithms used to detect and diagnose faulty bearings in heavy-duty milling machine tool spindle heads. Different kinds of faults have been created deliberately on the bearings of a test spindle head. The prediction effectiveness of several detection methods are tested when faults are in different stages of development.

Published in:

Instrumentation & Measurement Magazine, IEEE  (Volume:16 ,  Issue: 2 )