By Topic

Two-Stage Minimax Regret Robust Unit Commitment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ruiwei Jiang ; Dept. of Ind. & Syst. Eng., Univ. of Florida, Gainesville, FL, USA ; Jianhui Wang ; Muhong Zhang ; Yongpei Guan

In addition to long-existing load uncertainty on power systems, continuously increasing renewable energy injections (such as wind and solar) have further made the power grid more volatile and uncertain. Stochastic and recently introduced robust optimization approaches have been studied to provide the day-ahead unit commitment decision with the consideration of real-time load and supply uncertainties. In this paper, we introduce an innovative minimax regret unit commitment model aiming to minimize the maximum regret of the day-ahead decision from the actual realization of the uncertain real-time wind power generation. Our approach will ensure the robustness of the unit commitment decision considering the inherent uncertainty in wind generation. Meanwhile, our approach will provide a system operator a clear picture in terms of the maximum regret value among all possible scenarios. A Benders' decomposition algorithm is developed to solve the problem. Finally, our extensive case studies compare the performances of three different approaches (robust optimization, minimax regret, and stochastic optimization) and verify the effectiveness of our proposed algorithm.

Published in:

Power Systems, IEEE Transactions on  (Volume:28 ,  Issue: 3 )