Cart (Loading....) | Create Account
Close category search window
 

A 1 Mb Nonvolatile Embedded Memory Using 4T2MTJ Cell With 32 b Fine-Grained Power Gating Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Ohsawa, T. ; Center for Spintronics Integrated Syst., Tohoku Univ., Sendai, Japan ; Koike, H. ; Miura, S. ; Honjo, H.
more authors

A 1 Mb nonvolatile embedded memory using a four transistor and two spin-transfer-torque (STT) magnetic tunnel junction (MTJ) cell is designed and fabricated to demonstrate its zero standby power and high performance. The power supply voltages of 32 cells along a word line (WL) are controlled simultaneously by a power line (PL) driver to eliminate the standby power without impact on the access time. This fine-grained power gating scheme also optimizes the trade-off between macro size and operation power. The butterfly curve for the cell is measured to be asymmetric as predicted, enhancing the cell's static noise margin (SNM) for data retention. The scaling of 1 Mb macro size is compared with that of the 6T SRAM counterpart, indicating that the former will become smaller than the latter at 45 nm technology node and beyond by moderately thinning its tunnel dielectrics (MgO) in accordance with the shrink of the MTJ's cross sectional area. The operation current of the macro is also shown to be almost unchanged over generations, while that of the 6T SRAM increases exponentially due to the degradation of MOSFET off-current as the device scales.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:48 ,  Issue: 6 )

Date of Publication:

June 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.