Cart (Loading....) | Create Account
Close category search window

Average inversion level, modeling, and physics of erbium-doped fiber amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sun, Y. ; Lucent Technol., Bell Labs., Holmdel, NJ, USA ; Zyskind, J.L. ; Srivastava, A.K.

We present a detailed study of a set of models for characterizing the gain, the input and output powers of single erbium-doped fiber amplifiers (EDFAs) and networks of EDFAs. The time dependent gain is described by a single ordinary differential equation for the average inversion level of an EDFA with arbitrary number of signal channels with arbitrary power levels and propagation directions. In steady state, this ordinary differential equation becomes a transcendental equation from which many important parameters are derived. Through perturbation analysis of the time dependent model, the output perturbation can be expressed explicitly in terms of the input perturbations, which is useful for tone calculations. Therefore, this set of models can be applied to the steady state, and to large- and small-signal transient states in wavelength-division multiplexed (WDM) optical communication networks with EDFAs. The models are applied to analyze fast power transients in networks of EDFAs

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:3 ,  Issue: 4 )

Date of Publication:

Aug 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.