By Topic

To what extent could we detect field defects? an empirical study of false negatives in static bug finding tools

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Thung, F. ; Singapore Manage. Univ., Singapore, Singapore ; Lucia, L. ; Lo, D. ; Lingxiao Jiang
more authors

Software defects can cause much loss. Static bug-finding tools are believed to help detect and remove defects. These tools are designed to find programming errors; but, do they in fact help prevent actual defects that occur in the field and reported by users? If these tools had been used, would they have detected these field defects, and generated warnings that would direct programmers to fix them? To answer these questions, we perform an empirical study that investigates the effectiveness of state-of-the-art static bug finding tools on hundreds of reported and fixed defects extracted from three open source programs: Lucene, Rhino, and AspectJ. Our study addresses the question: To what extent could field defects be found and detected by state-of-the-art static bug-finding tools? Different from past studies that are concerned with the numbers of false positives produced by such tools, we address an orthogonal issue on the numbers of false negatives. We find that although many field defects could be detected by static bug finding tools, a substantial proportion of defects could not be flagged. We also analyze the types of tool warnings that are more effective in finding field defects and characterize the types of missed defects.

Published in:

Automated Software Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM International Conference on

Date of Conference:

3-7 Sept. 2012