By Topic

Pressure Effects on the Lamination of Organic Light-Emitting Diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jing Du ; Dept. of Mech. & Aerosp. Eng., Princeton Univ., Princeton, NJ, USA ; Tong, T. ; Akande, W. ; Tsakiridou, A.
more authors

This paper presents the results of finite element simulations of the lamination process for the fabrication of organic light-emitting diodes (OLEDs). The simulations utilize mechanical properties of the individual layers of the OLED structures that are obtained using nanoindentation techniques. The simulations show that applied pressure can cause contact evolution and sink-in around dust particles that are interposed between the organic materials layers, or the organic/inorganic layers. The implications of the results are discussed for the fabrication of robust OLEDs.

Published in:

Display Technology, Journal of  (Volume:9 ,  Issue: 8 )