Cart (Loading....) | Create Account
Close category search window
 

Machine Learning with Brain Graphs: Predictive Modeling Approaches for Functional Imaging in Systems Neuroscience

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Richiardi, J. ; Institue of Bioeng., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Achard, S. ; Bunke, H. ; Van De Ville, D.

The observation and description of the living brain has attracted a lot of research over the past centuries. Many noninvasive imaging modalities have been developed, such as topographical techniques based on the electromagnetic field potential [i.e., electroencephalography (EEG) and magnetoencephalography (MEG)], and tomography approaches including positron emission tomography and magnetic resonance imaging (MRI). Here we will focus on functional MRI (fMRI) since it is widely deployed for clinical and cognitive neurosciences today, and it can reveal brain function due to neurovascular coupling (see ?From Brain Images to fMRI Time Series?). It has led to a much better understanding of brain function, including the description of brain areas with very specialized functions such as face recognition. These neuroscientific insights have been made possible by important methodological advances in MR physics, signal processing, and mathematical modeling.

Published in:

Signal Processing Magazine, IEEE  (Volume:30 ,  Issue: 3 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.