Cart (Loading....) | Create Account
Close category search window
 

Learning in network games with incomplete information: asymptotic analysis and tractable implementation of rational behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The role of social networks in learning and opinion formation has been demonstrated in a variety of scenarios such as the dynamics of technology adoption [1], consumption behavior [2], organizational behavior [3], and financial markets [4]. The emergence of network-wide social phenomena from local interactions between connected agents has been studied using field data [5]?[7] as well as lab experiments [8], [9]. Interest in opinion dynamics over networks is further amplified by the continuous growth in the amount of time that individuals spend on social media Web sites and the consequent increase in the importance of networked phenomena in social and economic outcomes. As quantitative data become more readily available, a research problem is to identify metrics that could characterize emergent phenomena such as conformism or diversity in individuals? preferences for consumer products or political ideologies [10]. With these metrics available, a natural follow-up research goal is the study of mechanisms that lead to diversity or conformism and the role of network properties like neighborhood structures on these outcomes. All of these questions motivate the development of theoretical models of opinion formation through local interactions in different scenarios.

Published in:

Signal Processing Magazine, IEEE  (Volume:30 ,  Issue: 3 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.