Cart (Loading....) | Create Account
Close category search window
 

Gaussian Assumption: The Least Favorable but the Most Useful [Lecture Notes]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sangwoo Park ; Texas A&M Univ., College Station, TX, USA ; Serpedin, E. ; Qaraqe, K.

Gaussian assumption is the most well-known and widely used distribution in many fields such as engineering, statistics, and physics. One of the major reasons why the Gaussian distribution has become so prominent is because of the central limit theorem (CLT) and the fact that the distribution of noise in numerous engineering systems is well captured by the Gaussian distribution. Moreover, features such as analytical tractability and easy generation of other distributions from the Gaussian distribution contributed further to the popularity of Gaussian distribution. Especially, when there is no information about the distribution of observations, Gaussian assumption appears as the most conservative choice. This follows from the fact that the Gaussian distribution minimizes the Fisher information, which is the inverse of the Cramer-Rao lower bound (CRLB) (or equivalently stated, the Gaussian distribution maximizes the CRLB). Therefore, any optimization based on the CRLB under the Gaussian assumption can be considered to be min-max optimal in the sense of minimizing the largest CRLB (see [1] and the references cited therein).

Published in:

Signal Processing Magazine, IEEE  (Volume:30 ,  Issue: 3 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.