By Topic

Seeing the Bigger Picture: How Nodes Can Learn Their Place Within a Complex Ad Hoc Network Topology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bertrand, A. ; Dept. of Electr. Eng. (ESAT), Univ. of Leuven, Leuven, Belgium ; Moonen, M.

This article explained how nodes in a network graph can infer information about the network topology or its topology related properties, based on in-network distributed learning, i.e., without relying on an external observer who has a complete overview over the network. Some key concepts from the field of SGT were reviewed, with a focus on those that allow for a simple distributed implementation, i.e., eigenvector or Katz centrality, algebraic connectivity, and the Fiedler vector. This paper also explained how the nodes themselves can quantify their individual network-wide influence, as well as identify densely connected node clusters and the sparse bridge links between them. The addressed concepts, as well as more advanced concepts from the field of SGT, are believed to be crucial catalysts in the design of topology-aware distributed algorithms. Examples were provided on how these techniques can be exploited in several nontrivial distributed signal processing tasks.

Published in:

Signal Processing Magazine, IEEE  (Volume:30 ,  Issue: 3 )