System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Logical Foundations and Fast Implementation of Probabilistic Tractography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhang, M. ; Imaging Inst., Cleveland Clinic Found., Cleveland, OH, USA ; Sakaie, K.E. ; Jones, S.E.

Although tractography can noninvasively map axonal pathways, current approaches are typically incomplete or computationally intensive. Fast, complete maps may serve as a useful clinical tool for assessing neurological disorders stemming from pathological anatomical connections such as epilepsy. We re-frame tractography in terms of logic and conditional probabilities. The formalism inherently includes global constraints and can compute connections between any two arbitrary regions of the brain. The formalism also lends itself to a fast implementation using standard partial differential equation solvers, which makes whole-brain probabilistic maps of anatomical connectivity feasible. We demonstrate results of our implementation on in vivo data and show that it outperforms Monte Carlo approaches in both computation time and identification of pathways.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:32 ,  Issue: 8 )