By Topic

Modeling Object Flows from Distributed and Federated RFID Data Streams for Efficient Tracking and Tracing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yanbo Wu ; Sch. of Comput. Sci. & Inf. Technol., Beijing Jiaotong Univ., Beijing, China ; Sheng, Q.Z. ; Hong Shen ; Zeadally, S.

In the emerging environment of the Internet of things (IoT), through the connection of billions of radio frequency identification (RFID) tags and sensors to the Internet, applications will generate an unprecedented number of transactions and amount of data that require novel approaches in RFID data stream processing and management. Unfortunately, it is difficult to maintain a distributed model without a shared directory or structured index. In this paper, we propose a fully distributed model for federated RFID data streams. This model combines two techniques, namely, tilted time frame and histogram to represent the patterns of object flows. Our model is efficient in space and can be stored in main memory. The model is built on top of an unstructured P2P overlay. To reduce the overhead of distributed data acquisition, we further propose several algorithms that use a statistically minimum number of network calls to maintain the model. The scalability and efficiency of the proposed model are demonstrated through an extensive set of experiments.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 10 )