By Topic

Velocity/Position Integration Formula Part II: Application to Strapdown Inertial Navigation Computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuanxin Wu ; Sch. of Aeronaut. & Astronaut., Central South Univ., Changsha, China ; Xianfei Pan

Inertial navigation applications are usually referenced to a rotating frame. Consideration of the navigation reference frame rotation in the inertial navigation algorithm design is an important but so far less seriously treated issue, especially for super high-speed flying vehicles or the future ultraprecision navigation system of several meters per hour. A rigorous approach is proposed to tackle the issue of navigation frame rotation in velocity/position computation by use of the newly-devised velocity/position integration formulae in the Part I companion paper. The two integration formulae set a well-founded cornerstone for the velocity/position algorithms' design that makes the comprehension of the inertial navigation computation principle more accessible to practitioners, and different approximations to the integrals involved give birth to various velocity/position update algorithms. Two-sample velocity and position algorithms are derived to exemplify the design process. In the context of level-flight airplane examples, the derived algorithm is analytically and numerically compared with the typical algorithms that exist in the literature. The results throw light on the problems in existing algorithms and the potential benefits of the derived algorithm.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:49 ,  Issue: 2 )