Cart (Loading....) | Create Account
Close category search window
 

UAV Path Planning with Tangent-plus-Lyapunov Vector Field Guidance and Obstacle Avoidance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hongda Chen ; Dept. of Syst. Eng. & Oper. Res., George Mason Univ., Fairfax, VA, USA ; Kuochu Chang ; Agate, C.S.

A dynamic path-planning algorithm is proposed for routing unmanned air vehicles (UAVs) in order to track ground targets under path constraints, wind effects, and obstacle avoidance requirements. We first present the tangent vector field guidance (TVFG) and the Lyapunov vector field guidance (LVFG) algorithms. We demonstrate that the TVFG outperforms the LVFG as long as a tangent line is available between the UAV's turning circle and an objective circle, which is a desired orbit pattern over a target. Based on a hybrid version of the TVFG and LVFG, we then derive a theoretically shortest path algorithm with UAV operational constraints given a target position and the current UAV dynamic state. This algorithm has the efficiency of the TVFG when UAV is outside the standoff circle and the ability to follow the path via the LVFG when inside the standoff circle. In addition we adopt point-mass approximation of the target state probability density function (pdf) for target motion prediction by exploiting road network information and target dynamics as well as obstacle avoidance strategies. Overall, the proposed technical approach is practical and competitive, supported by solid theoretical analysis on several aspects of the algorithm performance. With extensive simulations we show that the tangent-plus-Lyapunov vector field guidance (T+LVFG) algorithm provides effective and robust tracking performance in various scenarios, including a target moving according to waypoints or a random kinematics model in an environment that may include obstacles and/or winds.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:49 ,  Issue: 2 )

Date of Publication:

APRIL 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.