By Topic

Optimization of Object-Based Image Analysis With Random Forests for Land Cover Mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stefanski, J. ; Inst. of Geodesy & Geoinf., Univ. of Bonn, Bonn, Germany ; Mack, B. ; Waske, B.

A prerequisite for object-based image analysis is the generation of adequate segments. However, the parameters for the image segmentation algorithms are often manually defined. Therefore, the generation of an ideal segmentation level is usually costly and user-depended. In this paper a strategy for a semi-automatic optimization of object-based classification of multitemporal data is introduced by using Random Forest (RF) and a novel segmentation algorithm. The Superpixel Contour (SPc) algorithm is used to generate a set of different levels of segmentation, using various combinations of parameters in a user-defined range. Finally, the best parameter combination is selected based on the cross-validation-like out-of-bag (OOB) error that is provided by RF. Therefore, the quality of the parameters and the corresponding segmentation level can be assessed in terms of the classification accuracy, without providing additional independent test data. To evaluate the potential of the proposed concept, we focus on land cover classification of two study areas, using multitemporal RapidEye and SPOT 5 images. A classification that is based on eCognition's widely used multiresolution segmentation algorithm (MRS) is used for comparison. Experimental results underline that the two segmentation algorithms SPc and MRS perform similar in terms of accuracy and visual interpretation. The proposed strategy that uses the OOB error for the selection of the ideal segmentation level provides similar classification accuracies, when compared to the results achieved by manual-based image segmentation. Overall, the proposed strategy is operational and easy to handle and thus economizes the findings of optimal segmentation parameters for the Superpixel Contour algorithm.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:6 ,  Issue: 6 )