Cart (Loading....) | Create Account
Close category search window
 

Spatial-Spectral Kernel Sparse Representation for Hyperspectral Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jianjun Liu ; Sch. of Comput. Sci. & Eng., Nanjing Univ. of Sci. & Technol., Nanjing, China ; Zebin Wu ; Zhihui Wei ; Liang Xiao
more authors

Kernel sparse representation classification (KSRC), a nonlinear extension of sparse representation classification, shows its good performance for hyperspectral image classification. However, KSRC only considers the spectra of unordered pixels, without incorporating information on the spatially adjacent data. This paper proposes a neighboring filtering kernel to spatial-spectral kernel sparse representation for enhanced classification of hyperspectral images. The novelty of this work consists in: 1) presenting a framework of spatial-spectral KSRC; and 2) measuring the spatial similarity by means of neighborhood filtering in the kernel feature space. Experiments on several hyperspectral images demonstrate the effectiveness of the presented method, and the proposed neighboring filtering kernel outperforms the existing spatial-spectral kernels. In addition, the proposed spatial-spectral KSRC opens a wide field for future developments in which filtering methods can be easily incorporated.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:6 ,  Issue: 6 )

Date of Publication:

Dec. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.