By Topic

Single ADC Digital PFC Controller Using Precalculated Duty Cycles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sanchez, A. ; HCTLab Lab., Univ. Autonoma de Madrid, Madrid, Spain ; de Castro, A. ; Lopez, V.M. ; Azcondo, F.J.
more authors

Traditional digital power factor correction (PFC) uses three sensors to measure the input and output voltages and the input current. Each sensor, especially the input current one, increases the cost of the system and generates power losses in case of resistive sensors. This paper presents a controller for boost PFC converters. It uses precalculated duty cycles generated offline, and applies them to the switch. In order to control the converter with nonnominal conditions, just one analog-to-digital converter (ADC) is used, which measures the output voltage. Measuring the average and the ripple of the output voltage with this ADC, the controller takes compensation action for changes in the input voltage but also in the load of the converter. The average value is used to control the input voltage changes, while the ripple value is used to control load changes. These two loops present low frequency bandwidth, so the ADC and the whole system can be low cost. Finally, a comparator is used to detect the zero-crossing of the input voltage, so the precalculated values are synchronized with the ac mains. In this way, the converter only uses one ADC and one comparator, both with low bandwidth. Results show that high power factor and normative compliance are reached, even under nonnominal conditions.

Published in:

Power Electronics, IEEE Transactions on  (Volume:29 ,  Issue: 2 )