By Topic

Learning Prototype Hyperplanes for Face Verification in the Wild

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Meina Kan ; Key Lab. of Intell. Inf. Process., Inst. of Comput. Technol. (ICT), Beijing, China ; Dong Xu ; Shiguang Shan ; Wen Li
more authors

In this paper, we propose a new scheme called Prototype Hyperplane Learning (PHL) for face verification in the wild using only weakly labeled training samples (i.e., we only know whether each pair of samples are from the same class or different classes without knowing the class label of each sample) by leveraging a large number of unlabeled samples in a generic data set. Our scheme represents each sample in the weakly labeled data set as a mid-level feature with each entry as the corresponding decision value from the classification hyperplane (referred to as the prototype hyperplane) of one Support Vector Machine (SVM) model, in which a sparse set of support vectors is selected from the unlabeled generic data set based on the learnt combination coefficients. To learn the optimal prototype hyperplanes for the extraction of mid-level features, we propose a Fisher's Linear Discriminant-like (FLD-like) objective function by maximizing the discriminability on the weakly labeled data set with a constraint enforcing sparsity on the combination coefficients of each SVM model, which is solved by using an alternating optimization method. Then, we use the recent work called Side-Information based Linear Discriminant (SILD) analysis for dimensionality reduction and a cosine similarity measure for final face verification. Comprehensive experiments on two data sets, Labeled Faces in the Wild (LFW) and YouTube Faces, demonstrate the effectiveness of our scheme.

Published in:

IEEE Transactions on Image Processing  (Volume:22 ,  Issue: 8 )