By Topic

Multipath Exploitation in Through-Wall Radar Imaging Via Point Spread Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Setlur, P. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Chicago, Chicago, IL, USA ; Alli, G. ; Nuzzo, L.

Due to several sources of multipath in through-wall radar sensing, such as walls, floors, and ceilings, there could exist multipath ghosts associated with a few genuine targets in the synthetic aperture beamformed image. The multipath ghosts are false positives and therefore confusable with genuine targets. Here, we develop a multipath exploitation technique using point spread functions, which associate and map back the multipath ghosts to their genuine targets, thereby increasing the effective signal-to-clutter ratio (SCR) at the genuine target locations. To do so, we first develop a multipath model advocating the Householder transformation, which permits modeling multiple reflections at multiple walls, and also allows for unconventional room/building geometries. Second, closed-form solutions of the multipath ghost locations assuming free space propagation are derived. Third, a nonlinear least squares optimization is formulated and initialized with these free space solutions to localize the multipath ghosts in through-wall radar sensing. The exploitation approach is general and does not require a priori assumptions on the number of targets. The free space multipath ghost locations and exploitation technique derived here may be used as is for multipath exploitation in urban canyons via synthetic aperture radar. Analytical expressions quantifying the SCR gain after multipath exploitation are derived. The analysis is validated with experimental EM results using finite-difference time-domain simulations.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 12 )