By Topic

Performance Analysis of Macrodiversity MIMO Systems with MMSE and ZF Receivers in Flat Rayleigh Fading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Basnayaka, Dushyantha A. ; Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand ; Smith, Peter J. ; Martin, Phillipa A.

Consider a multiuser system where an arbitrary number of users communicate with a distributed receive array over independent Rayleigh fading paths. The receive array performs minimum mean squared error (MMSE) or zero forcing (ZF) combining and perfect channel state information is assumed at the receiver. This scenario is well-known and exact analysis is possible when the receive antennas are located in a single array. However, when the antennas are distributed, the individual links all have different average signal to noise ratio (SNRs) and this is a much more challenging problem. In this paper, we provide approximate distributions for the output SNR of a ZF receiver and the output signal to interference plus noise ratio (SINR) of an MMSE receiver. In addition, simple high SNR approximations are provided for the symbol error rate (SER) of both receivers assuming M-PSK or M-QAM modulations. These high SNR results provide array gain and diversity gain information as well as a remarkably simple functional link between performance and the link powers.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:12 ,  Issue: 5 )