By Topic

Compact Continuously Tunable Microstrip Low-Pass Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jia Ni ; Department of Electrical, Electronic and Computer Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, U.K. ; Jiasheng Hong

A compact continuously varactor-tuned low-pass filter using microstrip stepped-impedance hairpin resonators is proposed in this paper. A detailed theoretical analysis for the performance tuning mechanism is illustrated by using equivalent circuit models. The experiment results are provided to validate the proposed filter. From the measured results, it is found that five varactor diodes with two applied bias voltages used in the proposed design work well as a flexible tuning network, which not only provide a wide frequency tuning range of 46% from 1.60 to 2.94 GHz, but also offer an ability of selectivity controlling by using different applied voltages. Furthermore, the proposed filter using multiple cascaded hairpin resonators provides a very sharp cutoff frequency response with low insertion loss in each state, together with a wide and deep stopband with a rejection level greater than 20 dB. Good agreement between the measured and simulated results can be observed finally.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:61 ,  Issue: 5 )