By Topic

A Low-Power Processor With Configurable Embedded Machine-Learning Accelerators for High-Order and Adaptive Analysis of Medical-Sensor Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kyong Ho Lee ; Electr. Eng. Dept., Princeton Univ., Princeton, NJ, USA ; Verma, N.

Low-power sensing technologies have emerged for acquiring physiologically indicative patient signals. However, to enable devices with high clinical value, a critical requirement is the ability to analyze the signals to extract specific medical information. Yet given the complexities of the underlying processes, signal analysis poses numerous challenges. Data-driven methods based on machine learning offer distinct solutions, but unfortunately the computations are not well supported by traditional DSP. This paper presents a custom processor that integrates a CPU with configurable accelerators for discriminative machine-learning functions. A support-vector-machine accelerator realizes various classification algorithms as well as various kernel functions and kernel formulations, enabling range of points within an accuracy-versus-energy and -memory trade space. An accelerator for embedded active learning enables prospective adaptation of the signal models by utilizing sensed data for patient-specific customization, while minimizing the effort from human experts. The prototype is implemented in 130-nm CMOS and operates from 1.2 V-0.55 V (0.7 V for SRAMs). Medical applications for EEG-based seizure detection and ECG-based cardiac-arrhythmia detection are demonstrated using clinical data, while consuming 273 μJ and 124 μJ per detection, respectively; this represents 62.4× and 144.7× energy reduction compared to an implementation based on the CPU. A patient-adaptive cardiac-arrhythmia detector is also demonstrated, reducing the analysis-effort required for model customization by 20 ×.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:48 ,  Issue: 7 )