By Topic

A Multiple-Detection Joint Probabilistic Data Association Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
B. Habtemariam ; Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada ; R. Tharmarasa ; T. Thayaparan ; M. Mallick
more authors

Most conventional target tracking algorithms assume that a target can generate at most one measurement per scan. However, there are tracking problems where this assumption is not valid. For example, multiple detections from a target in a scan can arise due to multipath propagation effects as in the over-the-horizon radar (OTHR). A conventional multitarget tracking algorithm will fail in these scenarios, since it cannot handle multiple target-originated measurements per scan. The Joint Probabilistic Data Association Filter (JPDAF) uses multiple measurements from a single target per scan through a weighted measurement-to-track association. However, its fundamental assumption is still one-to-one. In order to rectify this shortcoming, this paper proposes a new algorithm, called the Multiple-Detection Joint Probabilistic Data Association Filter (MD-JPDAF) for multitarget tracking, which is capable of handling multiple detections from targets per scan in the presence of clutter and missed detection. The multiple-detection pattern, which can account for many-to-one measurement set-to-track association rather than one-to-one measurement-to-track association, is used to generate multiple detection association events. The proposed algorithm exploits all the available information from measurements by combinatorial association of events that are formed to handle the possibility of multiple measurements per scan originating from a target. The MD-JPDAF is applied to a multitarget tracking scenario with an OTHR, where multiple detections occur due to different propagation paths as a result of scattering from different ionospheric layers. Experimental results show that multiple-detection pattern based probabilistic data association improves the state estimation accuracy. Furthermore, the tracking performance of the proposed filter is compared against the Posterior Cramér-Rao Lower Bound (PCRLB), which is explicitly derived for the multiple-detection scenario with a single- target.

Published in:

IEEE Journal of Selected Topics in Signal Processing  (Volume:7 ,  Issue: 3 )