By Topic

OBEY: Optimal Batched Refactoring Plan Execution for Class Responsibility Redistribution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiau, H.C. ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Lee Wei Mar ; Chen, J.C.

The redistribution of class responsibilities is a common reengineering practice in object-oriented (OO) software evolution. During the redistribution, developers frequently construct batched refactoring plans for moving multiple methods and fields among various classes. With an objective of carefully maintaining the cohesion and coupling degree of the class design, executing a batched refactoring plan without introducing any objective-violating side effect into the refactored code is essential. However, using most refactoring engines for batched refactoring plan execution introduces coupling-increasing Middle Man bad smell in the final refactored code and therefore makes the refactoring execution suboptimal in achieving the redistribution objective. This work proposes Obey, a methodology for optimal batched refactoring plan execution. Obey analyzes a batched refactoring plan, identifies Middle Man symptoms that cause suboptimal execution, and renovates the plan for optimal execution. We have conducted an empirical study on three open-source software projects to confirm the effectiveness of Obey in a practical context.

Published in:

Software Engineering, IEEE Transactions on  (Volume:39 ,  Issue: 9 )