By Topic

Toward EEG control of upper limb power-assist exoskeletons: A preliminary study of decoding elbow joint velocities using EEG signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lalitharatne, T.D. ; Dept. of Adv. Technol. Fusion, Saga Univ., Saga, Japan ; Yoshino, A. ; Hayashi, Y. ; Teramoto, K.
more authors

It may not an easy task for physically weak elderly, disabled and injured individuals to perform the day to day activities in their life. Therefore, many assistive devices have been developed in order to improve the quality of life of those people in which they may not depend on others. Especially upper-limb power-assist exoskeletons have been developed since the upper limb motions are very important for the daily activities. Electromyography (EMG) signals and/or force sensor based control methods have been identified as the promising methods to control such exoskeleton devices. However, if the user cannot generate sufficient muscle signals or movements, the EMG or force sensor based methods could not be useful to the user. On the other hand, electroencephalography (EEG) signals are also important biological signals to extract the user's motion intention. In this study, the user's elbow joint motion is estimated based on the EEG signals. The measured EEG signals are pre-processed and input to a time-embedded linear model, which is assumed to decode the elbow joint angular velocities. The genetic algorithm (GA) is used to train the model. A six fold cross validation process was performed for each motion segment of each subject. The experimental results suggest that EEG signals with the tested decoding model can be used to continuously decode the elbow joint velocity.

Published in:

Micro-NanoMechatronics and Human Science (MHS), 2012 International Symposium on

Date of Conference:

4-7 Nov. 2012