By Topic

A Spatial Weight Error Control for a Class of Hyper-Redundant Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nirvana Popescu ; Department of Computer Science , Politehnica University of Bucharest, Bucharest, Romania ; Decebal Popescu ; Mircea Ivanescu

This paper treats the control problem of a class of hyper-redundant robots. The dynamic model of the arm is described by hyperbolic partial differential equations with uncertain components. By using a spatial weighted error control, the infinite dimensional system control becomes a finite-dimensional control problem. The stability analysis and the resulting controllers are obtained using the concept of boundary geometric control and a spatial weighted error control technique. A robust algorithm that is based on weighted error sliding mode control is discussed. The boundary tendon control determines the system evolution toward a prescribed switching surface, and in order to avoid the oscillations around the switching surface, a damping control determines a direct evolution, along the switching surface, toward the origin. Numerical simulations and experimental results are also provided to verify the effectiveness of the presented approach.

Published in:

IEEE Transactions on Robotics  (Volume:29 ,  Issue: 4 )