Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Magnetization Study on a New Type of Orthogonally Configured Magnetic Core Structure and Its Potential Application to Superconducting Controllable Reactors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Hui Hong ; Tianjin Univ., Tianjin, China ; Jinyin Zhang ; Men Song ; WeiZhi Gong
more authors

The magnetization state of a magnetic core can be adjusted and controlled by a dc bias coil. A significant voltage may be induced on the bias coil if the coil is coupled with a coil carrying alternative current through the magnetic core. In some practical applications, this induced voltage can cause significant problems. We designed a new type of orthogonally configured core structure to reduce or eliminate the induced voltage. In this design, a C-shape iron-core was orthogonally assembled with a closed iron-core. The closed iron-core was set through the gap of the C-shape core. The C-shape iron-core was wound with the working coil carrying alternative current, while the closed iron-core was with the dc bias coil. Under this configuration, the impedance of working coil could be controlled by applying different dc currents to the bias coil without the risk of inducing voltage on the coil. In our studies, computer simulations as well as laboratory experiments were conducted under different conditions. Test results show that the adjustable impedance range of the working coil is 27%. One of the potential applications for this technique is superconducting controllable reactor for power grids. In this paper, we will present the details of this study.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:23 ,  Issue: 3 )