By Topic

Fault tolerant control for non-Gaussian stochastic systems using RBF neural networks approximation model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Z. Skaf ; Control Systems Center, The University of Manchester, M60 1QD, Manchester, UK ; A. H. Al-Bayati ; H. Wang

In this paper, a new fault tolerant controller (FTC) algorithm for general stochastic nonlinear systems is studied. Different from the existing FTC methods, the measured information is the probability density functions (PDFs) of the system output rather than its value, where the radial basis functions (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings, so that the problem is transformed into a nonlinear FTC problem subject to the weight dynamical systems. The main objective of FTC requires detecting the occurrence of faults and maintaining the performance of the system in the presence of faults at a satisfying level. The FTC design consists of two steps. The first step is fault detection and diagnosis (FDD), which can produce an alarm when there is a fault in the system and also locate which component has a fault. The second step is to adapt the controller to the faulty case so that the system is able to achieve its target. A linear matrix inequality (LMI) based feasible FTC method is applied such that the fault can be detected and diagnosed. An illustrated example is included to demonstrate the use of control algorithm, and satisfactory results have been obtained.

Published in:

Control 2010, UKACC International Conference on

Date of Conference:

7-10 Sept. 2010