By Topic

Turn to turn fault diagnosis for induction machines based on wavelet transformation and BP neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Najafi, A. ; Dept. of Electr. Eng., Islamic Azad Univ., Germi, Iran ; Iskender, I. ; Farhadi, P. ; Najafi, B.

Based upon Wavelet Transformation analysis and BP neural network, a method for the fault diagnosis of stator winding is proposed in this paper. Firstly wavelet transformation was used to decompose vibration time signal of stator to extract the characteristic values - wavelet transformation energy, and features were input in to the BP NN. After training the BP NN could be used to identify the stator winding fault (Turn to Turn fault) patterns. Three typical turn to turn faults as 10 turn, 20 turn and 35 turn were studied. The result showed that the method of BP NN with wavelet transformation could not only detect the exiting of the fault in stator winding, but also effectively identify the fault patterns.

Published in:

Electrical Machines and Power Electronics and 2011 Electromotion Joint Conference (ACEMP), 2011 International Aegean Conference on

Date of Conference:

8-10 Sept. 2011