By Topic

A New Target Detector for Hyperspectral Data Using Cointegration Theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jihao Yin ; School of Astronautics, Beihang University, Beijing, China ; Chao Gao ; Xiuping Jia

This paper introduces Cointegration Theory to address the problem of adaptive target detection in hyperspectral imagery. Cointegration Theory aims at mining a long-term equilibrium relationship, which refers to the condition that an appropriate linear combination of several non-stationary series can be stationary as long as they have similar or related drift. Hyperspectral response sequences, which are highly non-stationary, have similar patterns among the same materials. To be treated as a time series, each given hyperspectral curve is matched with the reference spectrum via the Johansen Cointegration Test. The statistic of the test is then used for target detection. Experimental results indicate that our proposed method is effective and has a strong capacity to identify interesting objects from their background.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:6 ,  Issue: 2 )