By Topic

Approximating Gaussian Mixture Model or Radial Basis Function Network With Multilayer Perceptron

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Patrikar, A.M. ; Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA

Gaussian mixture models (GMMs) and multilayer perceptron (MLP) are both popular pattern classification techniques. This brief shows that a multilayer perceptron with quadratic inputs (MLPQ) can accurately approximate GMMs with diagonal covariance matrices. The mapping equations between the parameters of GMM and the weights of MLPQ are presented. A similar approach is applied to radial basis function networks (RBFNs) to show that RBFNs with Gaussian basis functions and Euclidean norm can be approximated accurately with MLPQ. The mapping equations between RBFN and MLPQ weights are presented. There are well-established training procedures for GMMs, such as the expectation maximization (EM) algorithm. The GMM parameters obtained by the EM algorithm can be used to generate a set of initial weights of MLPQ. Similarly, a trained RBFN can be used to generate a set of initial weights of MLPQ. MLPQ training can be continued further with gradient-descent based methods, which can lead to improvement in performance compared to the GMM or RBFN from which it is initialized. Thus, the MLPQ can always perform as well as or better than the GMM or RBFN.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 7 )