By Topic

High-Accuracy Tracking Control of Hydraulic Rotary Actuators With Modeling Uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianyong Yao ; Sch. of Mech. Eng., Nanjing Univ. of Sci. & Technol., Nanjing, China ; Zongxia Jiao ; Dawei Ma ; Liang Yan

Structured and unstructured uncertainties are the main obstacles in the development of advanced controllers for high-accuracy tracking control of hydraulic servo systems. For the structured uncertainties, nonlinear adaptive control can be employed to achieve asymptotic tracking performance. But modeling errors, such as nonlinear frictions, always exist in physical hydraulic systems and degrade the tracking accuracy. In this paper, a robust integral of the sign of the error controller and an adaptive controller are synthesized via backstepping method for motion control of a hydraulic rotary actuator. In addition, an experimental internal leakage model of the actuator is built for precise model compensation. The proposed controller accounts for not only the structured uncertainties (i.e., parametric uncertainties), but also the unstructured uncertainties (i.e., nonlinear frictions). Furthermore, the controller theoretically guarantees asymptotic tracking performance in the presence of various uncertainties, which is very important for high-accuracy tracking control of hydraulic servo systems. Extensive comparative experimental results are obtained to verify the high-accuracy tracking performance of the proposed control strategy.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:19 ,  Issue: 2 )