By Topic

Localization of License Plate Number Using Dynamic Image Processing Techniques and Genetic Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abo Smara, G. ; Fac. of Comput. & Inf. Technol., King Abdulaziz Univ., Jeddah, Saudi Arabia ; Khalefah, F.

In this research, the design of a new genetic algorithm (GA) is introduced to detect the locations of license plate (LP) symbols. An adaptive threshold method is applied to overcome the dynamic changes of illumination conditions when converting the image into binary. Connected component analysis technique (CCAT) is used to detect candidate objects inside the unknown image. A scale-invariant geometric relationship matrix is introduced to model the layout of symbols in any LP that simplifies system adaptability when applied in different countries. Moreover, two new crossover operators, based on sorting, are introduced, which greatly improve the convergence speed of the system. Most of the CCAT problems, such as touching or broken bodies, are minimized by modifying the GA to perform partial match until reaching an acceptable fitness value. The system is implemented using MATLAB and various image samples are experimented with to verify the distinction of the proposed system. Encouraging results with 98.4% overall accuracy are reported for two different datasets having variability in orientation, scaling, plate location, illumination, and complex background. Examples of distorted plate images are successfully detected due to the independency on the shape, color, or location of the plate.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:18 ,  Issue: 2 )