By Topic

On False Data-Injection Attacks against Power System State Estimation: Modeling and Countermeasures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Qingyu Yang ; SKLMSE Lab., Xi'an Jiaotong Univ., Xi'an, China ; Jie Yang ; Wei Yu ; Dou An
more authors

It is critical for a power system to estimate its operation state based on meter measurements in the field and the configuration of power grid networks. Recent studies show that the adversary can bypass the existing bad data detection schemes, posing dangerous threats to the operation of power grid systems. Nevertheless, two critical issues remain open: 1) how can an adversary choose the meters to compromise to cause the most significant deviation of the system state estimation, and 2) how can a system operator defend against such attacks? To address these issues, we first study the problem of finding the optimal attack strategy--i.e., a data-injection attacking strategy that selects a set of meters to manipulate so as to cause the maximum damage. We formalize the problem and develop efficient algorithms to identify the optimal meter set. We implement and test our attack strategy on various IEEE standard bus systems, and demonstrate its superiority over a baseline strategy of random selections. To defend against false data-injection attacks, we propose a protection-based defense and a detection-based defense, respectively. For the protection-based defense, we identify and protect critical sensors and make the system more resilient to attacks. For the detection-based defense, we develop the spatial-based and temporal-based detection schemes to accurately identify data-injection attacks.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:25 ,  Issue: 3 )