By Topic

Energy efficient peak power reduction in OFDM with amplitude predistortion aided by orthogonal pilots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Paredes Paredes, M.C. ; Dept. of Signal Theor. & Commun., Carlos III Univ. of Madrid, Leganes, Spain ; Fernandez-Getino Garcia, M.J.

The high Peak-to-Average Power Ratio (PAPR) is a main drawback of Orthogonal Frequency Division Multiplexing (OFDM) systems. We propose a twostep technique to reduce the PAPR consisting of a metric-based constellation extension method, such as Simple Amplitude Predistortion (SAP) algorithm, aided by Orthogonal Pilot Sequences (OPS) in a previous step, where we also provide a low-complex implementation of OPS scheme. We show that our proposal, named OP-SAP, outperforms previous approaches in terms of PAPR reduction, due to joining the benefits of Orthogonal Pilots with SAP algorithm. Moreover, it is energy efficient within two aspects: transmitted energy and implementation energy. OP-SAP saves up to 57% of transmitted energy per predistorted symbol compared to SAP. Regarding implementation energy, PAPR reduction techniques introduce some additional computational complexity, which requires extra cycles in the processor that demand energy consumption. We present an exhaustive analysis on computational power cost that shows the low power consumption of OP-SAP compared to other methods as SeLected Mapping (SLM), what yields a remarkable energy saving in its practical implementation1.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:59 ,  Issue: 1 )