By Topic

Generation, Amplification, and Nonlinear Self-Compression of Powerful Superradiance Pulses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ginzburg, N.S. ; Inst. of Appl. Phys., Nizhny Novgorod, Russia ; Zotova, I.V. ; Cross, A.W. ; Phelps, A.D.R.
more authors

Superradiance (SR) of electron bunches can be considered an effective method of production of ultrashort electromagnetic pulses. Different types of SR associated with different mechanisms (cyclotron, Cherenkov, and bremsstrahlung) of stimulated emission are observed experimentally in the millimeter and centimeter wavelength bands. Progress in this research has enabled a new type of generator to be created capable of generating unique short (under 200-300 ps) electromagnetic pulses at super high peak powers exceeding 1 GW in the millimeter and 3 GW in the centimeter waveband. Some new methods for further increasing of the SR pulse peak power along with the promotion of such sources to higher frequency bands are discussed. These new methods include phase synchronization of several SR pulse generators, the amplification of an SR pulse during its propagation along a quasi-stationary electron beam and nonlinear compression in the process of induced self-transparency.

Published in:

Plasma Science, IEEE Transactions on  (Volume:41 ,  Issue: 4 )