By Topic

Multiple-Kernel, Multiple-Instance Similarity Features for Efficient Visual Object Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chensheng Sun ; Dept. of Electron. & Inf. Eng., Hong Kong Polytech. Univ., Hong Kong, China ; Kin-Man Lam

We propose to use the similarity between the sample instance and a number of exemplars as features in visual object detection. Concepts from multiple-kernel learning and multiple-instance learning are incorporated into our scheme at the feature level by properly calculating the similarity. The similarity between two instances can be measured by various metrics and by using the information from various sources, which mimics the use of multiple kernels for kernel machines. Pooling of the similarity values from multiple instances of an object part is introduced to cope with alignment inaccuracy between object instances. To deal with the high dimensionality of the multiple-kernel multiple-instance similarity feature, we propose a forward feature-selection technique and a coarse-to-fine learning scheme to find a set of good exemplars, hence we can produce an efficient classifier while maintaining a good performance. Both the feature and the learning technique have interesting properties. We demonstrate the performance of our method using both synthetic data and real-world visual object detection data sets.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 8 )