By Topic

A Class of Algorithms for Time-Frequency Multiplier Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Olivero, A. ; Lab. d'Anal., Topologie et Probabilites, Aix-Marseille Univ., Marseille, France ; Torresani, B. ; Kronland-Martinet, R.

We propose here a new approach together with a corresponding class of algorithms for offline estimation of linear operators mapping input to output signals. The operators are modeled as multipliers, i.e., linear and diagonal operator in a frame or Bessel representation of signals (like Gabor, wavelets ...) and characterized by a transfer function. The estimation problem is formulated as a regularized inverse problem, and solved using iterative algorithms, based on gradient descent schemes. Various estimation problems, which differ by a choice for the regularization function, are studied in the case of Gabor multipliers. The transfer function actually provides a meaningful interpretation of the differences between the two signals or signal classes under consideration, and examples are discussed. Furthermore, examples of signal transformations with such Gabor transfer functions are also given.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 8 )