Cart (Loading....) | Create Account
Close category search window
 

Memristor-Based Neural Logic Blocks for Nonlinearly Separable Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Soltiz, M. ; Dept. of Comput. Eng., Rochester Inst. of Technol., Rochester, NY, USA ; Kudithipudi, D. ; Merkel, C. ; Rose, G.S.
more authors

Neural logic blocks (NLBs) enable the realization of biologically inspired reconfigurable hardware. Networks of NLBs can be trained to perform complex computations such as multilevel Boolean logic and optical character recognition (OCR) in an area- and energy-efficient manner. Recently, several groups have proposed perceptron-based NLB designs with thin-film memristor synapses. These designs are implemented using a static threshold activation function, limiting the set of learnable functions to be linearly separable. In this work, we propose two NLB designs-robust adaptive NLB (RANLB) and multithreshold NLB (MTNLB)-which overcome this limitation by allowing the effective activation function to be adapted during the training process. Consequently, both designs enable any logic function to be implemented in a single-layer NLB network. The proposed NLBs are designed, simulated, and trained to implement ISCAS-85 benchmark circuits, as well as OCR. The MTNLB achieves 90 percent improvement in the energy delay product (EDP) over lookup table (LUT)-based implementations of the ISCAS-85 benchmarks and up to a 99 percent improvement over a previous NLB implementation. As a compromise, the RANLB provides a smaller EDP improvement, but has an average training time of only ≈ 4 cycles for 4-input logic functions, compared to the MTNLBs ≈ 8-cycle average training time.

Published in:

Computers, IEEE Transactions on  (Volume:62 ,  Issue: 8 )

Date of Publication:

Aug. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.