Cart (Loading....) | Create Account
Close category search window
 

Green synthesis of silver nanoparticles using white sugar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Meshram, S.M. ; Dept. of Biotechnol., SGB Amravati Univ., Amravati, India ; Bonde, S.R. ; Gupta, I.R. ; Gade, A.K.
more authors

Till date several methods of chemical synthesis of silver nanoparticles (AgNps) are known. Most of the protocol dealing with the chemical synthesis of AgNps involves high pressure, temperature, energy and technical skills. Thus, a method with much greener approach is the need of the hour. Accordingly, the authors have developed a method that is cost-effective, energy-efficient and easy method for the synthesis of AgNps. The AgNps were synthesised by using white sugar and sodium hydroxide (NaOH) in the presence of sunlight. These nanoparticles were characterised by visual observation, ultraviolet-visible (UV-vis) spectrophotometry, Fourier transform infrared (FTIR), nanoparticle tracking and analysis (NTA) and transmission electron microscopy (TEM). The effect of NaOH on the rate of AgNps synthesis was also studied. Formation of AgNps was primarily detected by change in colour of reaction mixture from colourless to yellow after treatment with 1 mM silver salt (AgNO3). UV-vis spectroscopy showed peak at 409 nm. NTA revealed the polydispersed nature of nanoparticles, 15-30 nm in diameter. FTIR showed the presence of gluconic acid as capping agent, which increases the stability of AgNps in the colloids. TEM demonstrated the presence of spherical AgNps in the range of 10-25 nm. The present method confirms the synthesis of AgNps by using white sugar and NaOH. This method is simple, eco-friendly and economically sustainable, making it amenable to large-scale industrial production of AgNps.

Published in:

Nanobiotechnology, IET  (Volume:7 ,  Issue: 1 )

Date of Publication:

March 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.